longer than the sum of the covalent radii of $2.15 \AA$ (Pauling, 1960), yet distinctly smaller than the sum of the van der Waals radii of $3.7 \AA$ (Pauling, 1960). No structural information for other $\mathrm{Sb}^{\text {III }}$ complexes with neutral N -donor ligands is available. However, it is noteworthy that in the EDTA complex HSb $\left(\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{8}\right) .2 \mathrm{H}_{2} \mathrm{O}$ the $\mathrm{Sb}-\mathrm{N}$ distances [2.31(1), 2.39 (1) \AA \} are also rather long (Kita, Uehiro, Iwamoto, Ouchi \& Yoshino, 1976).

Intermolecular distances do not indicate interactions exceeding van der Waals forces.

The two least-squares planes defined by the atoms (I): $\mathrm{C}(n)(n=1-6)$ and (II): $\mathrm{N}(1), \mathrm{N}(2), \mathrm{C}(m)(m=$ 7-18) show that the atoms in planes (I) and (II) respectively do not deviate significantly from them. The positions of the atoms $\mathrm{Sb}(1), \mathrm{O}(1)$ and $\mathrm{O}(2)$ lie 0.097 (1), 0.039 (9) and 0.006 (7) \AA respectively out of the plane (I), and $\mathrm{Sb}(1)$ lies $0 \cdot 158$ (1) \AA out of plane (II). The angle between plane (I) and plane (II) is $96 \cdot 6^{\circ}$.

We thank the Fonds der Chemie for financial support, the DFG (Bonn) and CNR (Rome) for a visiting grant.

References

Aurivillus, B. \& Särnstrand, C. (1976). Acta Chem.
Scand. Ser. A, 30, 232-234.

Barnard, P. W. C., Donaldson, J. D. \& Tricker, M. J. (1979). Inorg. Chim. Acta, 32, L77-L78.

Brown, H. P. \& Austin, J. H. (1941). J. Am. Chem. Soc. 63, 2054-2055.
Burschka, C. (1978). Z. Anorg. Allg. Chem. 446, 185-192.
Cromer, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.3.1. Birmingham: Kynoch Press.
Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2B. Birmingham: Kynoch Press.
Dewan, J. C., Edwards, A. J., Guerchais, J. E. \& Petillon, F. (1975). J. Chem. Soc. Dalton Trans. pp. 2295-2297.
Gress, M. E. \& Jacobson, R. A. (1974). Inorg. Chim. Acta, 8, 209-217.
Johnson, C. K. (1976). ORTEP II. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee.
Kamenar, B., Grdenić, D. \& Prout, C. K. (1970). Acta Cryst. B26, 181-188.
Kita, I., Uehiro, T., Iwamoto, T., Ouchi, A. \& Yoshino, Y. (1976). Chem. Lett. pp. 333-334.

Müller, U., (1978). Z. Anorg. Allg. Chem. 447, 171-178.
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca: Cornell Univ. Press.
Ryan, R. R., Mastin, S. H. \& Larson, A. C. (1971). Inorg. Chem. 10, 2793-2795.
Waal, B. W. van de (1976). POP1. Plot of Packing Program. Twente Univ. of Technology, Enschede, The Netherlands.

Structure of Manganese(II) L-Lactate Dihydrate

By T. Lis
Institute of Chemistry, The University, 50-383 Wroclaw, Poland

(Received 2 July 1981; accepted 28 September 1981)

Abstract

Mn}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\), orthorhombic, $P 22_{1} 2_{1}, a=6.117(2), b=12 \cdot 183(5), c=$ 14.633 (5) $\AA, M_{r}=269 \cdot 1, V=1090 \cdot 5 \AA^{3}, Z=4, D_{m}$ $=1.64, D_{x}=1.64 \mathrm{Mg} \mathrm{m}^{-3}, \mu(\mathrm{Mo} \mathrm{Ka}, \lambda=0.71069 \AA)$ $=1.29 \mathrm{~mm}^{-1}$, final $R=0.037$ and $R_{w}=0.032$ for 1601 non-zero reflexions. The Mn atom is octahedrally coordinated by one carboxylate O atom and one hydroxyl O atom from each lactate ligand and two water O atoms in cis positions. In this way neutral molecules $\left[\mathrm{Mn}\left(\mathrm{CH}_{3} \mathrm{CHOHCOO}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ are formed which are held together through hydrogen bonds. $\mathrm{Mn}-\mathrm{O}$ distances range between $2 \cdot 146$ (3) and $2 \cdot 185$ (2) \AA.

Introduction. This investigation was undertaken as part of a study on the stereochemistry of Mn carboxylate salts. Preliminary data of the crystal structures of racemic $\mathrm{Zn}^{\mathrm{II}}$ and Mn^{11} lactate trihydrates have been reported by Singh, Jain, Sakore \& Biswas (1975), who have solved the structure of the Zn salt and have found both salts to be isotypic.

Single crystals of $\mathrm{Mn}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ were prepared by dissolving Mn^{11} carbonate in a commercially available L-lactic acid, and allowing the solution to evaporate. Nearly colorless crystals grew as orthorhombic needles or plates. Weissenberg photographs showed the space group to be $P 2_{1} 2_{1} 2_{1}$. A
© 1982 International Union of Crystallography

Table 1. The final atom coordinates and equivalent isotropic thermal parameters with e.s.d.'s in parentheses

$$
B_{\text {eq }}=\frac{1}{3}\left(B_{11}+B_{22}+B_{33}\right) .
$$

	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
Mn	$0 \cdot 20303$ (8)	$0 \cdot 14558$ (4)	$0 \cdot 14623$ (3)	1.85 (2)
$\mathrm{O}(1)$	0.5177 (4)	0.1741 (2)	$0 \cdot 2097$ (2)	$2 \cdot 39$ (16)
$\mathrm{O}(2)$	0.7116 (5)	$0 \cdot 2880$ (2)	$0 \cdot 2964$ (2)	2.70 (16)
$\mathrm{O}(3)$	$0 \cdot 2480$ (5)	0.3224 (2)	$0 \cdot 1556$ (2)	2.98 (19)
$\mathrm{O}(4)$	$0 \cdot 3458$ (5)	$0 \cdot 1366$ (2)	0.0113 (2)	2.59 (17)
O(5)	0.4401 (6)	0.0332 (3)	-0.1072 (2)	3.69 (21)
O(6)	$0 \cdot 2226$ (5)	-0.0286 (2)	$0 \cdot 1116$ (2)	2.46 (17)
O(7)	0.0410 (5)	$0 \cdot 1347$ (3)	$0 \cdot 2760$ (2)	2.75 (19)
$\mathrm{O}(8)$	-0.1157 (5)	$0 \cdot 1678$ (3)	0.0829 (2)	2.75 (20)
$\mathrm{C}(1)$	0.5523 (6)	0.2673 (3)	0.2456 (3)	2.08 (22)
C(2)	$0 \cdot 3940$ (6)	0.3612 (3)	0.2246 (3)	2.23 (21)
C(3)	$0 \cdot 2707$ (8)	0.3969 (4)	0.3090 (4)	$3 \cdot 33$ (30)
C(4)	0.3582 (6)	0.0453 (3)	-0.0292 (3)	$2 \cdot 15$ (22)
C(5)	0.2657 (7)	-0.0560 (3)	0.0173 (3)	2.53 (25)
C(6)	0.0579 (11)	-0.0950 (6)	-0.0293 (4)	4.91 (45)
H(3)	$0 \cdot 159$ (6)	0.371 (3)	0.144 (3)	2.6 (9)
H(6)	0.242 (8)	-0.085 (4)	$0 \cdot 144$ (3)	4.9 (12)
H(71)	-0.073 (7)	0.171 (4)	0.283 (3)	3.9 (11)
H(72)	0.028 (9)	0.078 (4)	0.315 (4)	5.9 (14)
H(81)	-0.216 (9)	$0 \cdot 172$ (5)	0.107 (4)	6.4 (17)
H(82)	-0.153 (9)	$0 \cdot 232$ (5)	0.044 (3)	6.0 (13)
H(2)	0.483 (6)	0.429 (3)	$0 \cdot 199$ (3)	2.5 (8)
H(5)	0.387 (7)	-0.116 (4)	0.013 (3)	3.0 (9)
H(31)	$0 \cdot 168$ (9)	0.457 (4)	0.296 (4)	$6 \cdot 6$ (14)
H(32)	0.371 (9)	0.435 (4)	0.353 (4)	$6 \cdot 2$ (13)
H(33)	0.193 (9)	0.335 (5)	0.339 (4)	$7 \cdot 2$ (15)
H(61)	-0.016 (10)	-0.168 (5)	-0.002 (4)	$7 \cdot 1$ (15)
H(62)	0.090 (8)	-0.116 (4)	-0.093 (4)	5.0 (12)
H(63)	-0.069 (12)	-0.050 (6)	-0.023 (5)	10.0 (25)

Table 2. Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{Mn}-\mathrm{O}(1)$	$2.165(2)$	$\mathrm{Mn}-\mathrm{O}(4)$	$2 \cdot 162(2)$
$\mathrm{Mn}-\mathrm{O}(3)$	$2.176(2)$	$\mathrm{Mn}-\mathrm{O}(6)$	$2 \cdot 185(2)$
$\mathrm{Mn}-\mathrm{O}(7)$	$2.146(3)$	$\mathrm{Mn}(\mathrm{O}(8)$	$2.175(3)$
$\mathrm{C}(1)-\mathrm{O}(1)$	$1.268(4)$	$\mathrm{C}(4)-\mathrm{O}(4)$	$1.263(4)$
$\mathrm{C}(1)-\mathrm{O}(2)$	$1.251(4)$	$\mathrm{C}(4)-\mathrm{O}(5)$	$1.255(4)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.530(5)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.518(5)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.512(6)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.519(7)$
$\mathrm{C}(2)-\mathrm{O}(3)$	$1.429(4)$	$\mathrm{C}(5)-\mathrm{O}(6)$	$1.444(4)$
$\mathrm{O}(1)-\mathrm{Mn}-\mathrm{O}(3)$	$72.6(1)$	$\mathrm{O}(1)-\mathrm{Mn}-\mathrm{O}(4)$	$92.3(1)$
$\mathrm{O}(1)-\mathrm{Mn}-\mathrm{O}(6)$	$102.0(1)$	$\mathrm{O}(1)-\mathrm{Mn}-\mathrm{O}(7)$	$92.3(1)$
$\mathrm{O}(1)-\mathrm{Mn}-\mathrm{O}(8)$	$163.6(1)$	$\mathrm{O}(3)-\mathrm{Mn}-\mathrm{O}(4)$	$93.2(1)$
$\mathrm{O}(3)-\mathrm{Mn}-\mathrm{O}(6)$	$165 \cdot 7(1)$	$\mathrm{O}(3)-\mathrm{Mn}-\mathrm{O}(7)$	$93.6(1)$
$\mathrm{O}(3)-\mathrm{Mn}-\mathrm{O}(8)$	$90.9(2)$	$\mathrm{O}(4)-\mathrm{Mn}-\mathrm{O}(6)$	$73.5(1)$
$\mathrm{O}(4)-\mathrm{Mn}-\mathrm{O}(7)$	$172.6(1)$	$\mathrm{O}(4)-\mathrm{Mn}-\mathrm{O}(8)$	$88.8(1)$
$\mathrm{O}(6)-\mathrm{Mn}-\mathrm{O}(7)$	$99.8(1)$	$\mathrm{O}(6)-\mathrm{Mn}-\mathrm{O}(8)$	$94.1(1)$
$\mathrm{O}(7)-\mathrm{Mn}-\mathrm{O}(8)$	$88.3(2)$		
$\mathrm{Mn}-\mathrm{O}(1)-\mathrm{C}(1)$	$118.0(3)$	$\mathrm{Mn}-\mathrm{O}(4)-\mathrm{C}(4)$	$119.8(3)$
$\mathrm{Mn}-\mathrm{O}(3)-\mathrm{C}(2)$	$116.8(3)$	$\mathrm{Mn}-\mathrm{O}(6)-\mathrm{C}(5)$	$117.2(3)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(2)$	$123.8(4)$	$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{O}(5)$	$123.6(4)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$118.7(3)$	$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(5)$	$119.0(3)$
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	$117.5(3)$	$\mathrm{O}(5)-\mathrm{C}(4)-\mathrm{C}(5)$	$117.4(4)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$111.5(3)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$111.4(4)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(3)$	$106.9(3)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(6)$	$107.9(3)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{O}(3)$	$111.1(3)$	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{O}(6)$	$110.4(4)$

specimen $0.4 \times 0.35 \times 0.3 \mathrm{~mm}$ was cut from a large crystal. Data were collected on a Syntex P2, diffractometer with monochromatized Mo $K a$ radiation. The intensities were measured by the $2 \theta-\omega$ scan technique. After each group of 50 reflexions one standard was measured: no significant change in intensity was observed. Of 1877 reflexions accessible below $\theta=30^{\circ}, 1601$ with $I>1 \cdot 96 \sigma(I)$ were used for the structure determination. Empirical absorption corrections were made from φ-scan data. All calculations were performed on a NOVA 1200 computer with programs supplied by Syntex (1976). Neutralatom scattering factors used were those listed in International Tables for X-ray Crystallography (1974); both real and imaginary components of the anomalous dispersion were included for Mn and O atoms.

The $\mathrm{Mn}-\mathrm{Mn}$ vectors were identified in a Patterson function. All other atoms were found from difference syntheses. Full-matrix least-squares refinement with anisotropic (isotropic for H atoms) thermal parameters gave $R=0.037$ and $R_{w}=0.032$. [The refinement of the parameters for the inverted structure gave $R=$ 0.047 and $R_{w}=0.043$.] A final difference synthesis was featureless.

The final atomic coordinates are listed in Table 1, interatomic distances and angles in Table 2.* A view of the crystal structure down a and the atom-numbering scheme are shown in Fig. 1.

[^0]

Fig. 1. The crystal structure projected on the (100) plane.

Table 3. Geometry of the hydrogen bonds

$\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$	$\mathrm{O} \cdots \mathrm{O}$	$\mathrm{O}-\mathrm{H}$	$\mathrm{H} \cdots \mathrm{O}$	$\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$
$\mathrm{O}(3)-\mathrm{H}(3) \cdots \mathrm{O}\left(5^{\text {i }}\right)$	$2.673(4) \AA$	$0.82(4) \AA$	$1.86(4) \AA$	$172(4)^{\circ}$
$\mathrm{O}(6)-\mathrm{H}(6) \cdots \mathrm{O}\left(2^{\text {II }}\right)$	$2.640(3)$	$0.85(5)$	$1.80(5)$	$175(5)$
$\mathrm{O}(7)-\mathrm{H}(71) \cdots \mathrm{O} 2^{\text {III }}$	$2.763(4)$	$0.83(5)$	$1.95(5)$	$165(4)$
$\mathrm{O}(7)-\mathrm{H}(72) \cdots \mathrm{O} 5^{\text {IV }}$	$2.669(4)$	$0.90(5)$	$1.78(5)$	$169(5)$
$\mathrm{O}(8)-\mathrm{H}(81) \cdots \mathrm{O}\left(1^{\text {III }}\right)$	$2.912(4)$	$0.71(6)$	$2.21(6)$	$167(6)$
$\mathrm{O}(8)-\mathrm{H}(82) \cdots \mathrm{O}\left(4^{\text {l }}\right)$	$2.762(4)$	$0.99(5)$	$1.79(5)$	$164(5)$

Symmetry code: (i) $x-\frac{1}{2}, \frac{1}{2}-y,-z$; (ii) $1-x, y-\frac{1}{2}, \frac{1}{2}-z$; (iii) $x-1, y, z$; (iv) $\frac{1}{2}-x,-y, \frac{1}{2}+z$.

Table 4. Analysis of the configuration of the lactate anions
(a) Distances (\AA) from planes through lactate anions (atoms used to define the planes are indicated by an asterisk)

$\mathrm{O}(1)^{*}$	$0.001(3)$
$\mathrm{O}(2)^{*}$	$0.001(3)$
$\mathrm{C}(1)^{*}$	$-0.007(4)$
$\mathrm{C}(2)^{*}$	$0.002(4)$
$\mathrm{O}(3)$	$0.193(3)$
$\mathrm{H}(3)$	$0.18(4)$

$\mathrm{O}(4)^{*}$	$0.001(3)$
$\mathrm{O}(5)^{*}$	$0.002(4)$
$\mathrm{C}(4)^{*}$	$-0.007(4)$
$\mathrm{C}(5)^{*}$	$0.002(5)$
$\mathrm{O}(6)$	$-0.286(3)$
$\mathrm{H}(6)$	$-0.71(5)$

(b) Conformational angles $\left({ }^{\circ}\right)$

$\mathrm{H}(3)-\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$178(3)$
$\mathrm{H}(6)-\mathrm{O}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$-148(4)$
$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(1)$	$-7.3(4)$
$\mathrm{O}(6)-\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{O}(4)$	$-12.8(4)$
$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(2)$	$171.5(4)$
$\mathrm{O}(6)-\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{O}(5)$	$168.4(4)$

Discussion. The Mn atom is octahedrally coordinated by one carboxylate O atom and one hydroxyl O atom from each L-lactate ligand and two water O atoms in
cis positions. The structure is built up from discrete molecules $\left[\mathrm{Mn}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ held together through hydrogen bonds. Hydrogen-bond data are given in Table 3.
The molecular structure of the title compound is similar to that of $\mathrm{Mn}^{\mathrm{II}}$ glycolate dihydrate (Lis, 1980) but different from that of $\mathrm{Mn}^{\mathrm{II}}$ DL-lactate trihydrate (Singh et al., 1975), where the water molecules are in trans positions.
The bond lengths and angles (Table 2) are the normally expected values and comparable with those for Zn Dl-lactate trihydrate (Singh et al., 1975). The configuration of the $\mathrm{C}-\mathrm{C}-\mathrm{O}_{\mathrm{O}}$ group of each ligand is planar (Table 4). There is also a tendency for the $\mathrm{O}(3)$ or $\mathrm{O}(6)$ hydroxy atoms to lie in this plane. Similar trends have been observed in most α-hydroxycarbonyl systems (Newton \& Jeffrey, 1977; Lis, 1981).

References

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Lis, T. (1980). Acta Cryst. B36, 701-703.
Lis, T. (1981). Acta Cryst. B37, 1957-1959.
Newton, M. D. \& Jeffrey, G. A. (1977). J. Am. Chem. Soc. 99, 2413-2421.
Singh, K. D., Jain, S. C., Sakore, T. D. \& Biswas, A. B. (1975). Z. Kristallogr. 141, 473-475.

Syntex (1976). XTL/XTLE Structure Determination System. Cupertino: Syntex Analytical Instruments.

Acta Cryst. (1982). B38, 939-942

Structure of μ-[2,4,6-Tri(2-pyridyl)-1,3,5-triazine]-bis[bis(trifluoroacetato)mercury(II)]

By Joan Halfpenny
Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, England
and R. W. H. Small
Department of Chemistry, The University, Lancaster LA 1 4YA, England

(Received 13 July 1981; accepted 7 October 1981)

Abstract

Hg}_{2}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{4}\left(\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{6}\right)\right], \mathrm{C}_{26} \mathrm{H}_{12} \mathrm{~F}_{12} \mathrm{Hg}_{2}-\) $\mathrm{N}_{6} \mathrm{O}_{8}$, triclinic, $P \overline{1}, a=13.47$ (1), $b=15.85$ (2), $c=$ 9.60 (1) $\AA, \quad \alpha=112.4$ (1), $\beta=100 \cdot 0(1), \gamma=$ $110.3(1)^{\circ}, U=1663 \AA^{3}, D_{m}=2 \cdot 360, Z=2, D_{x}=$ $2.328 \mathrm{Mg} \mathrm{m}^{-3}, \mu(\mathrm{Mo} K \alpha)=8.98 \mathrm{~mm}^{-1} . R=0.055$ for 2062 diffractometer-measured intensities. The 2,4,6-tri(2-pyridyl)-1,3,5-triazine molecule acts as a bidentate

 0567-7408/82/030939-04\$01.00ligand to $\mathrm{Hg}(1)[\mathrm{Hg}-\mathrm{N} 2 \cdot 17$ (2), 2.61 (2) $\AA]$ and as a tridentate ligand towards $\mathrm{Hg}(2)[\mathrm{Hg}-\mathrm{N} 2.40(2)$, 2.44 (2), $2.50(2) \AA]$. The trifluoroacetate groups remain covalently attached to $\mathrm{Hg}[\mathrm{Hg}(1)-\mathrm{O} 2.13$ (2), 2.86 (2), 2.35 (2), 2.63 (2) \AA and $\mathrm{Hg}(2)-\mathrm{O} 2.37$ (2), 2.63 (2), 2.37 (2), 2.60 (3) $\AA]$. Effectively, $\mathrm{Hg}(1)$ is six-coordinated and $\mathrm{Hg}(2)$ is seven-coordinated.
© 1982 International Union of Crystallography

[^0]: * Lists of structure factors, anisotropic thermal parameters and least-squares planes have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 36444 (14 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

