longer than the sum of the covalent radii of 2.15 Å (Pauling, 1960), yet distinctly smaller than the sum of the van der Waals radii of 3.7 Å (Pauling, 1960). No structural information for other Sb<sup>III</sup> complexes with neutral N-donor ligands is available. However, it is noteworthy that in the EDTA complex HSb- $(C_{10}H_{12}N_2O_8).2H_2O$  the Sb-N distances [2.31 (1), 2.39(1) Å] are also rather long (Kita, Uehiro, Iwamoto, Ouchi & Yoshino, 1976).

Intermolecular distances do not indicate interactions exceeding van der Waals forces.

The two least-squares planes defined by the atoms (I): C(n) (n = 1-6) and (II): N(1), N(2), C(m) (m =7-18) show that the atoms in planes (I) and (II) respectively do not deviate significantly from them. The positions of the atoms Sb(1), O(1) and O(2) lie 0.097(1), 0.039(9) and 0.006(7) Å respectively out of the plane (I), and Sb(1) lies 0.158 (1) Å out of plane (II). The angle between plane (I) and plane (II) is  $96 \cdot 6^{\circ}$ .

We thank the Fonds der Chemie for financial support, the DFG (Bonn) and CNR (Rome) for a visiting grant.

#### References

AURIVILLIUS, B. & SÄRNSTRAND, C. (1976). Acta Chem. Scand. Ser. A, 30, 232-234.

- BARNARD, P. W. C., DONALDSON, J. D. & TRICKER, M. J. (1979). Inorg. Chim. Acta, 32, L77–L78.
- BROWN, H. P. & AUSTIN, J. H. (1941). J. Am. Chem. Soc. **63**, 2054–2055.
- BURSCHKA, C. (1978). Z. Anorg. Allg. Chem. 446, 185-192.
- CROMER, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.3.1. Birmingham: Kynoch Press.
- CROMER, D. T. & WABER, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2B. Birmingham: Kynoch Press.
- DEWAN, J. C., EDWARDS, A. J., GUERCHAIS, J. E. & PETILLON, F. (1975). J. Chem. Soc. Dalton Trans. pp. 2295-2297.
- GRESS, M. E. & JACOBSON, R. A. (1974). Inorg. Chim. Acta, 8, 209-217.
- JOHNSON, C. K. (1976). ORTEP II. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee.
- KAMENAR, B., GRDENIĆ, D. & PROUT, C. K. (1970). Acta Cryst. B26, 181–188.
- KITA, I., UEHIRO, T., IWAMOTO, T., OUCHI, A. & YOSHINO, Y. (1976). Chem. Lett. pp. 333-334.
- Müller, U., (1978). Z. Anorg. Allg. Chem. 447, 171-178.
- PAULING, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca: Cornell Univ. Press.
- RYAN, R. R., MASTIN, S. H. & LARSON, A. C. (1971). Inorg. Chem. 10, 2793-2795.
- WAAL, B. W. VAN DE (1976). POP1. Plot of Packing Program. Twente Univ. of Technology, Enschede, The Netherlands.

Acta Cryst. (1982). B38, 937-939

### Structure of Manganese(II) L-Lactate Dihydrate

### By T. Lis

Institute of Chemistry, The University, 50-383 Wrocław, Poland

(Received 2 July 1981; accepted 28 September 1981)

Abstract.  $Mn(C_{3}H_{5}O_{3})_{2}.2H_{2}O_{3}$ orthorhombic,  $P2_12_12_1, a = 6.117(2), b = 12.183(5), c =$ 14.633 (5) Å,  $M_r = 269.1$ , V = 1090.5 Å<sup>3</sup>, Z = 4,  $D_m$ = 1.64,  $D_x = 1.64$  Mg m<sup>-3</sup>,  $\mu$ (Mo K $\alpha$ ,  $\lambda = 0.71069$  Å) = 1.29 mm<sup>-1</sup>, final R = 0.037 and  $R_w = 0.032$  for 1601 non-zero reflexions. The Mn atom is octahedrally coordinated by one carboxylate O atom and one hydroxyl O atom from each lactate ligand and two water O atoms in cis positions. In this way neutral molecules  $[Mn(CH_3CHOHCOO)_2(H_2O)_2]$  are formed which are held together through hydrogen bonds. Mn-O distances range between 2.146 (3) and 2·185 (2) Å.

Introduction. This investigation was undertaken as part of a study on the stereochemistry of Mn carboxylate salts. Preliminary data of the crystal structures of racemic Zn<sup>II</sup> and Mn<sup>II</sup> lactate trihydrates have been reported by Singh, Jain, Sakore & Biswas (1975), who have solved the structure of the Zn salt and have found both salts to be isotypic.

Single crystals of  $Mn(C_3H_5O_3)_2$ .  $2H_2O$  were prepared by dissolving Mn<sup>11</sup> carbonate in a commercially available L-lactic acid, and allowing the solution to evaporate. Nearly colorless crystals grew as orthorhombic needles or plates. Weissenberg photographs showed the space group to be  $P2_12_12_1$ . A

0567-7408/82/030937-03\$01.00

 $B (\dot{A}^2)$ 

Table 1. The final atom coordinates and equivalent isotropic thermal parameters with e.s.d.'s in parentheses

$$B_{\rm eq} = \frac{1}{3}(B_{11} + B_{22} + B_{33}).$$

x

|       |                     | 2           | -           | - eq ( )  |
|-------|---------------------|-------------|-------------|-----------|
| Mn    | 0.20303 (8)         | 0.14558 (4) | 0.14623 (3) | 1.85 (2)  |
| O(1)  | 0.5177 (4)          | 0.1741 (2)  | 0·2097 (2)  | 2.39 (16) |
| O(2)  | 0.7116(5)           | 0.2880(2)   | 0.2964(2)   | 2.70 (16) |
| O(3)  | 0.2480(5)           | 0.3224(2)   | 0.1556 (2)  | 2.98 (19) |
| O(4)  | 0.3458 (5)          | 0.1366 (2)  | 0.0113(2)   | 2.59 (17) |
| O(5)  | 0.4401 (6)          | 0.0332(3)   | -0.1072(2)  | 3.69 (21) |
| O(6)  | 0.2226(5)           | -0.0286(2)  | 0.1116(2)   | 2.46 (17) |
| O(7)  | 0.0410(5)           | 0.1347 (3)  | 0.2760 (2)  | 2.75 (19) |
| O(8)  | -0·1157 (5)         | 0.1678 (3)  | 0.0829 (2)  | 2.75 (20) |
| C(1)  | 0.5523 (6)          | 0.2673 (3)  | 0.2456 (3)  | 2.08 (22) |
| C(2)  | 0.3940 (6)          | 0.3612(3)   | 0.2246(3)   | 2.23 (21) |
| C(3)  | 0.2707 (8)          | 0.3969 (4)  | 0.3090 (4)  | 3.33 (30) |
| C(4)  | 0.3582 (6)          | 0.0453 (3)  | -0.0292(3)  | 2.15 (22) |
| C(5)  | 0.2657 (7)          | -0.0560(3)  | 0.0173 (3)  | 2.53 (25) |
| C(6)  | 0.0579 (11)         | -0·0950 (6) | -0.0293 (4) | 4.91 (45) |
| H(3)  | 0.159 (6)           | 0.371 (3)   | 0.144 (3)   | 2.6 (9)   |
| H(6)  | 0.242 (8)           | -0.085(4)   | 0.144(3)    | 4.9 (12)  |
| H(71) | -0.073 (7)          | 0.171 (4)   | 0.283(3)    | 3.9 (11)  |
| H(72) | 0.028(9)            | 0.078 (4)   | 0.315(4)    | 5.9 (14)  |
| H(81) | -0.216(9)           | 0.172(5)    | 0.107 (4)   | 6.4 (17)  |
| H(82) | -0.153(9)           | 0.232(5)    | 0.044(3)    | 6.0 (13)  |
| H(2)  | 0.483 (6)           | 0.429 (3)   | 0.199 (3)   | 2.5 (8)   |
| H(5)  | 0.387 (7)           | -0.116 (4)  | 0.013 (3)   | 3.0 (9)   |
| H(31) | 0.168 (9)           | 0.457 (4)   | 0.296 (4)   | 6.6 (14)  |
| H(32) | 0.371 (9)           | 0.435 (4)   | 0.353 (4)   | 6.2 (13)  |
| H(33) | 0.193 (9)           | 0.335 (5)   | 0.339 (4)   | 7.2 (15)  |
| H(61) | <i>−</i> 0·016 (10) | -0.168 (5)  | -0.002 (4)  | 7.1 (15)  |
| H(62) | 0.090 (8)           | -0.116 (4)  | -0.093 (4)  | 5.0 (12)  |
| H(63) | -0.069(12)          | -0.050(6)   | 0.023 (5)   | 10.0 (25) |

Table 2. Interatomic distances (Å) and angles (°) withe.s.d.'s in parentheses

| Mn-O(1)        | 2.165 (2) | Mn-O(4)            | 2.162 (2) |
|----------------|-----------|--------------------|-----------|
| Mn - O(3)      | 2.176 (2) | Mn-O(6)            | 2.185(2)  |
| Mn - O(7)      | 2.146 (3) | Mn-O(8)            | 2.175 (3) |
| C(1)–O(1)      | 1.268 (4) | C(4)–O(4)          | 1.263 (4) |
| C(1)–O(2)      | 1.251 (4) | C(4)-O(5)          | 1.255 (4) |
| C(1)-C(2)      | 1.530 (5) | C(4) - C(5)        | 1.518 (5) |
| C(2)-C(3)      | 1.512 (6) | C(5)-C(6)          | 1.519 (7) |
| C(2)–O(3)      | 1.429 (4) | C(5)–O(6)          | 1.444 (4) |
| O(1)-Mn-O(3)   | 72.6 (1)  | O(1)-Mn-O(4)       | 92.3 (1)  |
| O(1)–Mn–O(6)   | 102-0 (1) | O(1)-Mn-O(7)       | 92.3 (1)  |
| O(1)–Mn–O(8)   | 163-6 (1) | O(3)-Mn-O(4)       | 93-2(1)   |
| O(3)–Mn–O(6)   | 165-7 (1) | O(3)-Mn-O(7)       | 93.6(1)   |
| O(3)-Mn-O(8)   | 90.9 (2)  | O(4) - Mn - O(6)   | 73.5 (1)  |
| O(4)-Mn-O(7)   | 172-6 (1) | O(4)-Mn-O(8)       | 88.8 (1)  |
| O(6)-Mn-O(7)   | 99•8 (1)  | O(6)-Mn-O(8)       | 94.1 (1)  |
| O(7)-Mn-O(8)   | 88.3 (2)  |                    |           |
| Mn-O(1)-C(1)   | 118.0 (3) | Mn-O(4)-C(4)       | 119.8 (3) |
| Mn-O(3)-C(2)   | 116-8 (3) | Mn - O(6) - C(5)   | 117.2 (3) |
| O(1)-C(1)-O(2) | 123.8 (4) | O(4) - C(4) - O(5) | 123.6 (4) |
| O(1)-C(1)-C(2) | 118.7 (3) | O(4) - C(4) - C(5) | 119.0 (3) |
| O(2)-C(1)-C(2) | 117.5 (3) | O(5)-C(4)-C(5)     | 117.4 (4) |
| C(1)-C(2)-C(3) | 111.5 (3) | C(4) - C(5) - C(6) | 111.4 (4) |
| C(1)-C(2)-O(3) | 106-9 (3) | C(4) - C(5) - O(6) | 107.9 (3) |
| C(3)-C(2)-O(3) | 111.1 (3) | C(6) - C(5) - O(6) | 110-4 (4) |
|                |           |                    |           |

specimen  $0.4 \times 0.35 \times 0.3$  mm was cut from a large crystal. Data were collected on a Syntex  $P2_1$ diffractometer with monochromatized Mo  $K\alpha$ radiation. The intensities were measured by the  $2\theta - \omega$ scan technique. After each group of 50 reflexions one standard was measured: no significant change in intensity was observed. Of 1877 reflexions accessible below  $\theta = 30^{\circ}$ , 1601 with  $I > 1.96\sigma(I)$  were used for the structure determination. Empirical absorption corrections were made from  $\varphi$ -scan data. All calculations were performed on a NOVA 1200 computer with programs supplied by Syntex (1976). Neutralatom scattering factors used were those listed in International Tables for X-ray Crystallography (1974); both real and imaginary components of the anomalous dispersion were included for Mn and O atoms.

The Mn-Mn vectors were identified in a Patterson function. All other atoms were found from difference syntheses. Full-matrix least-squares refinement with anisotropic (isotropic for H atoms) thermal parameters gave R = 0.037 and  $R_w = 0.032$ . [The refinement of the parameters for the inverted structure gave R = 0.047 and  $R_w = 0.043$ .] A final difference synthesis was featureless.

The final atomic coordinates are listed in Table 1, interatomic distances and angles in Table 2.\* A view of the crystal structure down  $\mathbf{a}$  and the atom-numbering scheme are shown in Fig. 1.



Fig. 1. The crystal structure projected on the (100) plane.

<sup>\*</sup> Lists of structure factors, anisotropic thermal parameters and least-squares planes have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 36444 (14 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

### Table 3. Geometry of the hydrogen bonds

| $O-H\cdots O$                    | 00          | O-H        | $H\!\cdots\!O$ | 0−H…0    |
|----------------------------------|-------------|------------|----------------|----------|
| $O(3) - H(3) \cdots O(5^{i})$    | 2·673 (4) Å | 0·82 (4) Å | 1.86 (4) Å     | 172 (4)° |
| $O(6) - H(6) \cdots O(2^{  })$   | 2.640 (3)   | 0.85(5)    | 1.80 (5)       | 175 (5)  |
| $O(7) - H(71) \cdots O(2^{H})$   | 2.763 (4)   | 0.83 (5)   | 1.95 (5)       | 165 (4)  |
| $O(7) - H(72) \cdots O(5^{ v })$ | 2.669 (4)   | 0.90(5)    | 1.78 (5)       | 169 (5)  |
| $O(8) - H(81) \cdots O(1^{(1)})$ | 2.912(4)    | 0.71 (6)   | 2.21(6)        | 167 (6)  |
| $O(8) - H(82) \cdots O(4^{1})$   | 2.762 (4)   | 0.99 (5)   | 1.79 (5)       | 164 (5)  |

Symmetry code: (i)  $x - \frac{1}{2}, \frac{1}{2} - y, -z$ ; (ii)  $1 - x, y - \frac{1}{2}, \frac{1}{2} - z$ ; (iii) x - 1, y, z; (iv)  $\frac{1}{2} - x, -y, \frac{1}{2} + z$ .

# Table 4. Analysis of the configuration of the lactate anions

(a) Distances (Å) from planes through lactate anions (atoms used to define the planes are indicated by an asterisk)

| O(1)* | 0.001 (3)  | O(4)* | 0.001 (3)          |
|-------|------------|-------|--------------------|
| O(2)* | 0.001 (3)  | O(5)* | 0.002 (4)          |
| C(1)* | -0.007 (4) | C(4)* | -0.007 (4)         |
| C(2)* | 0.002 (4)  | C(5)* | 0.002 (5)          |
| O(3)  | 0.193 (3)  | O(6)  | <b>−0</b> ·286 (3) |
| H(3)  | 0.18(4)    | H(6)  | -0.71(5)           |

(b) Conformational angles (°)

| H(3) - O(3) - C(2) - C(1) | 178 (3)   |
|---------------------------|-----------|
| H(6)-O(6)-C(5)-C(4)       | -148 (4)  |
| O(3)-C(2)-C(1)-O(1)       | -7.3 (4)  |
| O(6)-C(5)-C(4)-O(4)       | -12.8 (4) |
| O(3)-C(2)-C(1)-O(2)       | 171.5 (4) |
| O(6)-C(5)-C(4)-O(5)       | 168-4 (4) |

**Discussion.** The Mn atom is octahedrally coordinated by one carboxylate O atom and one hydroxyl O atom from each L-lactate ligand and two water O atoms in *cis* positions. The structure is built up from discrete molecules  $[Mn(C_3H_5O_3)_2(H_2O)_2]$  held together through hydrogen bonds. Hydrogen-bond data are given in Table 3.

The molecular structure of the title compound is similar to that of  $Mn^{II}$  glycolate dihydrate (Lis, 1980) but different from that of  $Mn^{II}$  DL-lactate trihydrate (Singh *et al.*, 1975), where the water molecules are in *trans* positions.

The bond lengths and angles (Table 2) are the normally expected values and comparable with those for Zn DL-lactate trihydrate (Singh *et al.*, 1975). The configuration of the C-C $\bigcirc_{O}$  group of each ligand is planar (Table 4). There is also a tendency for the O(3) or O(6) hydroxy atoms to lie in this plane. Similar trends have been observed in most  $\alpha$ -hydroxycarbonyl systems (Newton & Jeffrey, 1977; Lis, 1981).

### References

- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
- LIS, T. (1980). Acta Cryst. B36, 701-703.
- LIS, T. (1981). Acta Cryst. B37, 1957-1959.
- Newton, M. D. & JEFFREY, G. A. (1977). J. Am. Chem. Soc. 99, 2413-2421.
- SINGH, K. D., JAIN, S. C., SAKORE, T. D. & BISWAS, A. B. (1975). Z. Kristallogr. 141, 473–475.
- Syntex (1976). XTL/XTLE Structure Determination System. Cupertino: Syntex Analytical Instruments.

Acta Cryst. (1982). B38, 939-942

## Structure of $\mu$ -[2,4,6-Tri(2-pyridyl)-1,3,5-triazine]-bis[bis(trifluoroacetato)mercury(II)]

**By JOAN HALFPENNY** 

Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, England

### AND R. W. H. SMALL

Department of Chemistry, The University, Lancaster LA1 4YA, England

(Received 13 July 1981; accepted 7 October 1981)

Abstract. [Hg<sub>2</sub>(CF<sub>3</sub>CO<sub>2</sub>)<sub>4</sub>(C<sub>18</sub>H<sub>12</sub>N<sub>6</sub>)], C<sub>26</sub>H<sub>12</sub>F<sub>12</sub>Hg<sub>2</sub>-N<sub>6</sub>O<sub>8</sub>, triclinic,  $P\bar{1}$ , a = 13.47 (1), b = 15.85 (2), c = 9.60 (1) Å, a = 112.4 (1),  $\beta = 100.0$  (1),  $\gamma = 110.3$  (1)°, U = 1663 Å<sup>3</sup>,  $D_m = 2.360$ , Z = 2,  $D_x = 2.328$  Mg m<sup>-3</sup>,  $\mu$ (Mo Ka) = 8.98 mm<sup>-1</sup>. R = 0.055 for 2062 diffractometer-measured intensities. The 2,4,6-tri(2-pyridyl)-1,3,5-triazine molecule acts as a bidentate 0567-7408/82/030939-04\$01.00 ligand to Hg(1) [Hg–N  $2 \cdot 17$  (2),  $2 \cdot 61$  (2) Å] and as a tridentate ligand towards Hg(2) [Hg–N  $2 \cdot 40$  (2),  $2 \cdot 44$  (2),  $2 \cdot 50$  (2) Å]. The trifluoroacetate groups remain covalently attached to Hg [Hg(1)–O  $2 \cdot 13$  (2),  $2 \cdot 86$  (2),  $2 \cdot 35$  (2),  $2 \cdot 63$  (2) Å and Hg(2)–O  $2 \cdot 37$  (2),  $2 \cdot 63$  (2),  $2 \cdot 37$  (2),  $2 \cdot 60$  (3) Å]. Effectively, Hg(1) is six-coordinated and Hg(2) is seven-coordinated. © 1982 International Union of Crystallography